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Abstract – 
Construction robots have the potential to 

increase construction productivity at job sites and 
can help overcome industry challenges such as labor 
shortage and safety risks. User-friendly interfaces 
are critical for advancing human-robot work 
collaboration and increasing use of construction 
robots. However, human-robot interfaces in the 
context of construction industry applications have 
been investigated to a limited extent only. This paper 
proposes a novel sensor-based framework which 
integrates eye tracking and hand gesture recognition 
for human-robot interaction in construction. 
Specifically, it begins with visual detection of 
construction machines in the first-person views. 
Then, the machine-of-interest is determined based 
on the detection results and human gaze points. 
Finally, a real-time hand gesture recognition system 
is employed for conveying messages to the machine 
to guide its operations. So far, the proposed 
framework was tested in a laboratory setting using a 
robotic dump truck. The results showed that the 
proposed framework could serve an effective 
interface to support the interactions between 
workers and construction machines. 

Keywords – 
Wearable Sensors; Eye Tracking; Hand Gesture 

Recognition; Human-Robot Interface 

1 Introduction 
The construction industry is facing a unique set of 

challenges, such as low productivity, poor safety 
records, labor shortage [1,2], etc. Through years of 
development, construction robots and  autonomous 
machines have demonstrated their potential to improve 
the construction industry [3]. They have the functional 
ability to perform construction tasks that are impossible, 
undesirable, or unsafe for human workers [4]. Also, 

construction robots have the potential to enhance quality 
and efficiency of job site operations [5].  

Recent advances in robotics make it possible for 
human-robot collaboration on construction sites [6,7]. 
This collaboration helps workers transfer some of their 
current duties to robots and instead devote their effort 
on high-level planning and cognitive work as robot 
supervisors [8]. Human workers can also benefit from 
the assistance of robots in performing repetitive 
physically-demanding tasks [6]. To maximize the 
benefits from human-robot work collaboration, a user-
friendly interface is critical to support their interactions. 
However, human-robot interfaces in the context of 
construction is a less explored field [9]. 

A variety of interfaces, including visual displays, 
hand gestures, speech language, and eye tracking, have 
been developed for human-robot interactions in various 
industries [10–13]. Among them, non-verbal 
communication, such as hand gestures and eye tracking, 
is deemed to be an effective channel in noisy 
construction environments [12]. As natural and intuitive 
interfaces, they can provide a standard mode for 
workers from different backgrounds and cultures to 
convey correct instructions to a robot [14]. 

 There are many research studies proposed for 
developing human-robot interfaces based on different 
types of sensors. The employed sensors include 
electromyography (sEMG) sensors [15], Inertial 
Measurement Unit (IMU) [16], radar sensors [17], 
infrared technology [18], etc. These studies aimed to 
interpret subjects’ intentions [16], understand sign 
language [19], express human emotions [18], etc. They 
either relied on hand-crafted features [15] or deep neural 
networks [20]. The results illustrated the potential of 
deep neural networks for performing recognition with 
excellent learning ability. 

 Although the performance of existing interfaces is 
promising, one significant challenge they face is in 
dealing with uncertainty and ambiguity that commonly 
arise in unstructured and dynamic environments such as 
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construction sites. It has been well noted that one type 
of sensor data may not be enough to address the 
uncertainty and resolve unambiguity. This paper 
proposes a sensor-based framework which integrates 
eye tracking and hand gesture recognition for human-
robot interaction in construction. In this approach, 
visual detection of construction machines is first 
conducted using first person view frames. Based on the 
detection results and gaze points, the machine-of-
interest is then defined. Finally, a real-time system is 
employed for hand gesture recognition. The recognized 
gesture would be sent to the machine-of-interest. The 
effectiveness of the framework was tested in a 
laboratory study to interact with a robotic dump truck. 
The results showed that the proposed framework can be 
used to serve as an effective interface for workers to 
interact with construction machines. 

2 Related Work 
Various research studies have been conducted to 

develop human-robot interfaces. They relied on hand 
gesture recognition, eye tracking, smart glasses, etc. An 
overview of these studies is provided below. 

2.1 Hand Gesture Recognition 
Hand gestures, as a common way to express intent, 

have various applications in human machine interaction 
due to their simple, yet effective, nature [21–24]. 
Various research studies have been conducted to 
achieve hand gesture recognition. They can be classified 
into two categories, vision-based methods [23,25] and 
wearable sensors-based methods [26,27], depending on 
the type of data source they relied on. Vision-based 
methods generally relied on hand-crafted features, such 
as Improved Dense Trajectories (iDT) [28] and Mix 
Features Around Sparse Keypoints (MFSK) [29]. With 
technical development, the use of deep learning 
technologies has become mainstream in gesture 
recognition. For example, Molchanov et al. [24] 
combined 3D Convolutional Neural Network (CNN) 
with recurrent layers to perform simultaneous detection 
and classification of dynamic hand gestures. The 
recurrent 3D-CNN enabled the gesture classification 
without requiring explicit pre-segmentation. Cao et al. 
[30] presented a framework of C3D+LSTM+RSTTM 
which augmented C3D with a recurrent spatiotemporal 
transform module. The presented framework could not 
only capture short-term spatiotemporal features but also 
model long-term dependencies. Köpüklü et al. [23] 
proposed a hierarchical CNN structure to realize the 
real-time hand gesture recognition. The proposed 
architecture firstly employed a detector which was a 
lightweight 3D-CNN to detect the existence of hand 
gestures and then utilized deep 3D-CNNs to classify the 

detected gestures. 
Motion sensory data provide an alternative data 

source for hand gesture recognition. For instance, Su et 
al. [31] presented a robust hand gesture recognition 
framework based on random forests. The random forests 
were established using improved decision trees which 
included the pre-classifiers to avoid the 
misclassification of gestures with similar features. Côté-
Allard et al. [32] applied CNNs on aggregated data from 
multiple users to identify hand gestures. In their work, 
CNNs were combined with transfer learning to decrease 
the data requirement of the training model. Fang et al. 
[27] designed a new CNN architecture named SLRNet 
to achieve dynamic gesture recognition. The CNN 
architecture extracted the features of two hands and 
fused the features into the fully connected layer. Yuan et 
al. [20] proposed an improved deep feature fusion 
network to detect long distance dependency in complex 
hand gestures. In their work, a LSTM model with fused 
feature vectors was introduced to classify complex hand 
motions into corresponding categories.  

2.2 Eye Tracking  
Conventionally, eye tracking has been regarded as 

one of the most visible cues for user behavior/intention 
recognition [33]. There are many efforts dedicated to 
developing reliable eye tracking-based methods. Zhang 
et al. [34] presented a novel eye tracking-learning-
detection algorithm with tracking feedback. The 
detection area was adjusted adaptively and narrowed by 
the tracking feedback to adapt to situations where the 
human eye was partially blocked or had morphological 
changes. Santini et al. [35] introduced a novel method 
named Pupil Reconstructor with Subsequent Tracking 
(PuReST) for fast and robust pupil tracking. The 
PuReST consists of three distinct parts: initial pupil 
detection, shared tracking preamble, outline and greedy 
tracker. Laddi and Prakash [36] proposed an 
unobtrusive and calibration-free framework for an eye 
gaze tracking based interface for a desktop environment. 
The proposed eye gaze tracking involved a hybrid 
approach wherein the unsupervised image gradients 
method computed the iris centers over the eye regions 
extracted by the supervised regression-based algorithm. 
Cubero and Rehm [37] relied on eye tracking to obtain 
eye gazes and then developed an LSTM-based machine 
learning model to classify human intent. As the 
technology matures, commercial eye tracking products 
such as Tobbi glasses 3 [38] and Pupil Core [39] are 
becoming available in the market and have various 
potential fields of application. 

2.3 Smart Glasses 
There are other commonly used human-robot 
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interfaces including augmented reality (AR) / mixed 
reality (MR) / virtual reality (VR) glasses, etc. For 
example, Wang et al. [40] presented a method of 
manufacture assembly fault detection based on AR. The 
augmented information interactions made the 
manufacturing and assembly inspection process more 
visual and intuitive. Du et al. [41] proposed a novel 
teleoperation method that allowed users to guide robots 
through a combined form of AR glasses and Leap 
Motion Controllers. Users could observe the virtual 
robot from an arbitrary angle, which enhanced the users’ 
interactive immersion and provided more natural 
human-machine interaction. Wallmyr et al. [42] 
employed MR interfaces to display information within 
the excavator operators’ field of view, which enhanced 
information detectability through quick glances. This 
practice could help lower operator’s mental workload 
together with an improved rate in detection of presented 
information. However, their main adoption limitation 
lies in the expensive hardware and training; and also the 
AR and MR technologies behind those smart glasses are 
still not mature and/or suitable enough for engineering 
and construction [43].  

3 Proposed Framework 
The overview of the proposed framework is 

illustrated in Figure 1. The framework consists of three 
components: visual detection, machine-of-interest 
generation, and hand gesture recognition. Specifically, 
the visual detection of construction machines from first 
person view frames is first conducted. Based on the 
detection results and gaze points, the machine-of-
interest is then generated. Finally, a real-time system is 
employed to achieve hand gesture recognition. 

 

 
Figure 1. Framework for human-robot 
collaboration 

3.1 Visual Detection 
In this component of the framework, an object 

detection algorithm is employed to extract the regions of 
construction machines in video sequences. YOLOv3 [44] 
is selected in this study to detect the construction 

machines because many research results have verified 
the high performance of YOLOv3 in various 
construction object detection scenarios [45,46]. The 
YOLOv3 system can be generally divided into two steps: 
feature extraction and detection. First, Darknet-53 is 
applied to extract features of the whole image and 
obtain feature embeddings at different scales. Then, 
these features are fed into different branches of the 
detector to get bounding boxes and class information. 
The coordinates of bounding boxes from the detection 
results are then used as the input for the object-of-
interest generation process. 

3.2 Machine-of-Interest Generation 
In this component of the framework, the machine-

of-interest is generated based on the bounding boxes of 
construction machines and gaze points. This component 
can be divided into three steps: synchronization for the 
bounding boxes and gaze points, determination of the 
machine-of-interest, and interaction mode triggering. 
First, the bounding boxes and gaze points are 
synchronized based on a unified timestamp since they 
are produced or derived from different sensors. Then, 
the machine is determined as the machine-of-interest if 
the gaze point resides in its bounding box. As for the 
triggering of the interaction mode, if the gaze points 
stay in the bounding box of the machine-of-interest for a 
duration longer than a threshold τ , the machine will 
enter the interaction mode and the hand gesture 
recognition component can then be applied to convey 
messages to the machine; otherwise, it means that the 
framework is not confident regarding which machine 
the user desires to interact with. It should be noted that 
the selection of τ depends on how likely the user 
intends to trigger the interaction mode. Here, based on 
preliminary trials,τ has been set as 0.3 second.  

3.3 Hand Gesture Recognition 
The purpose of this component of the framework is 

to apply a hand gesture recognition system to convey 
messages to the object-of-interest. Specifically, the 
accelerometer and gyroscope signals are directly 
captured from sensors attached on fingers as raw data. 
Several techniques including sampling rate 
synchronization and Z score normalization are used to 
preprocess the raw data. Then, a sliding window 
approach is designed to achieve real-time classification 
of hand gestures. With the signals coming in 
continuously, the window moves through the whole set 
of signals and the preprocessed data in the latest 
window are fed into a Fully Convolutional Network 
(FCN)-based classifier to achieve hand gesture 
recognition. If the highest probability of the classifier is 
more than a threshold θ, the identification of the hand 
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gesture is confirmed. Here, based on preliminary trials, 
θ has been set as 0.95. 

 

 
Figure 2. The architecture of FCN classifier 

The FCN developed by Wang et al. [47] is selected 
here since it is superior for multivariate time series 
classification tasks compared to other deep learning 
networks [48]. Figure 2 shows an overview of the FCN 
architecture. It comprises three convolutional blocks 
where each block contains three operations: a 
convolution followed by a batch normalization whose 
result is fed to a ReLU activation function. The result of 
the third convolutional block is averaged over the entire 
time dimension which corresponds to the Global 
Average Pooling (GAP) layer. Finally, a traditional 
softmax classifier is fully connected to the GAP layer’s 
output.  

4  Implementation and Results 

4.1 Sensor Selection 
Pupil Core [39] is employed as the eye tracking 

device to get the first person view frames and track the 
eye gaze points. It is selected since Pupil Core is an 
open-sourced software, which is conducive for user 
developments. The structure of Pupil Core is shown in 
Figure 3. A scene camera is mounted on the front of the 
eye tracking device to get the first-person view frames. 
Two eye cameras are facing towards two eyes, 
separately, to obtain their gaze points. 

 

 
Figure 3. The structure of Pupil Core (adapted 
from [39]) 

To capture the hand motions, Tap Strap 2 [49] is 
selected as the wearable sensor. Compared to other 
wearable sensors like data gloves which are not easy or 
comfortable to wear, the Tap sensor is portable, 
lightweight and easy to wear on the fingers. This is 
beneficial for the construction workers to complete the 
tasks using their hands. As shown in Figure 4, the Tap 
sensor includes five 3-axis accelerometers and one IMU 
(3-axis accelerometer + 3-axis gyroscope). The five 
accelerometers are located at five fingers, separately, 
while IMU is placed on the thumb. In total, there are 21 
signal channels captured by the Tap sensor.  

 
Figure 4. The structure of Tap Strap 2 

4.2 Offline Training for Hand Gesture 
Recognition 

The offline training has been conducted on an 
Ubuntu Linux 64-bit operating system. The hardware 
configuration is as follows: an Intel® Core™ i7-4820K 
CPU (Central Processing Unit) @ 3.70 GHz, a 32 GB 
memory, and an NVIDIA Titan Xp DDR5X @ 12.0 GB 
GPU (Graphics Processing Unit).  

The dataset created in [50] was employed to conduct 
offline training for hand gesture recognition. The dataset 
is randomly split into training (66.7%), validation 
(16.7%) and test (16.6%) sets, resulting in 128 training, 
32 validation and 32 test gestures.  

For training, the learning rate and the batch size are 
set as large as possible, i.e., 0.0001 and 16, respectively. 
When the loss is steady, the learning rate is reduced 
with a fixed decay factor which is set to 10. Stochastic 
gradient descent is employed as the optimizer. Table 1 
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provides a summary of the recognition performance of 
FCN. The accuracies on validation and test sets are 96.9% 
and 87.5%, respectively. The inference time achieved 
on validation and test sets are 0.13 second and 0.14 
second, respectively. 

Table 1. Recognition performance of FCN 

Indexes Validation set Test set 
Accuracy 

(%) 96.9 87.5 

Inference 
time (s) 0.13 0.14 

4.3 Laboratory Study 
A laboratory study was conducted to test whether 

the proposed framework could serve as an interface to 
help workers control and/or interact with construction 
machines. Specifically, the user was asked to stare at the 
construction machine he/she intended to interact with 
and then perform hand gestures. The first-person view 
frames and gaze points were captured by a Pupil core 
while the hand motions were obtained by a Tap sensor. 
All these data were transferred to a computer and input 
into the framework in real time. Based on the 
recognition results, the corresponding instructions 
would be sent to a remote controller, where the control 
signals would be transmitted to operate the truck model 
remotely. 

Figure 5 shows an example of using the proposed 
framework to remotely control a toy truck to lift its 
dump box. The user first stared at the truck and made 
the hand gesture of “hoist” to request the truck model to 
lift its dump box. The gesture was captured by the 
framework and the corresponding instruction was sent 
to the truck model through the remote controller. 
Following the instruction, the truck model lifted its 
dump box gradually (Frames 185 and 221). After a short 
pause, the user stared at an irrelevant place and 
performed the gesture of “hoist” again. Since the truck 
did not enter the interaction mode, no recognition 
results were incurred (Frames 374 and 401). 

Although the laboratory study illustrated the 
feasibility of using the proposed framework as human-
robot interface, there are still several technical 
challenges to be addressed before it can be applied at 
construction sites. First, the performance of the 
framework highly depends on visual detection of 
construction machines. Considering that construction 
sites are complex and cluttered with tools, materials, 
workers, etc. The trained detection model needs to be 
robust to accommodate such complicated characteristics 
of the environment. Second, the gaze point accuracy is 
critical for determining which machine the user intends 
to interact with. However, several complicating factors 

at construction sites, such as diverse weather conditions 
and sunlight intensities, pose challenges for accurate 
estimation of eye gaze points. 

 

 

 

 
Figure 5. Demonstration of integrated eye-
tracking and gesture-based control 
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5 Conclusions and Future Work 
While construction robots have the potential to offer 

significant benefits to the construction industry, their 
increased adoption will require user-friendly interfaces 
for human-robot collaboration. So far, work on human-
robot interfaces in the context of the construction 
domain is limited. This paper has proposed a sensor-
based framework which integrates eye tracking and 
hand gesture recognition for human-robot interaction in 
construction. The framework comprises three 
components: visual detection, machine-of-interest 
generation, and hand gesture recognition. The 
effectiveness of the framework was tested with a 
laboratory study to interact with a robotic dump truck. 
The results show that the proposed framework is 
suitable for developing an interface to help workers 
interact with construction machines. 

Future work will focus on including more classes of 
construction gestures into the dataset to make the 
training and testing of hand gesture classifiers more 
robust. Additionally, it will investigate the development 
of a human-robot interaction system using the proposed 
framework. 
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